Turbulent Heat Transfer and Pressure Drop for
نویسندگان
چکیده
The main objective of this paper is to propose a new friction compensation mechanism applied to robotic actuators. Friction is a phenomenon that changes with time and with actuator’s operational conditions. To deal with these parameters variations, it is proposed a neuro-fuzzy algorithm for friction identification and compensation. A Neural Network (NN) was trained off line. The NN output (compensation friction torque) is multiplied by a gain, obtained with a Fuzzy inference algorithm, to deal with friction parameters variations and to adjust the compensation torque. Simulation results showed good performance, indicating that the actuator becomes approximately linear.
منابع مشابه
Numerical Investigation of Heat Transfer and Pressure Drop in a Corrugated Channel
The influence of variation in rib-height to channel-height ratio (e/H) on the heat transfer and pressure drop characteristics inside a channel with corrugated upper and lower plates was investigated numerically in the present study. The governing equations were solved by using finite volume approximations for a wide range of (0.06 < e/H < 0.26) and Reynolds numbers (5400 < Re < 23000), with a m...
متن کاملA numerical investigation of γ-Al2O3-water nanofluids heat transfer and pressure drop in a shell and tube heat exchanger
The effect of γ-Al2O3 nanoparticles on heat transfer rate, baffle spacing and pressure drop in the shell side of small shell and tube heat exchangers was investigated numerically under turbulent regime. γ-Al2O3-water nanofluids and pure water were used in the shell side and the tube side of heat exchangers, respectively. Since the properties of γ-Al2O3-water nanofluids were variable, they were ...
متن کاملEffects of Rib Shapes on Heat Transfer Characteristics of Turbulent Flow of Al2O3-Water Nanofluid inside Ribbed Tubes
In this paper, convection heat transfer of Al2O3-water nanofluid turbulent flow through internally ribbed tubes with different rib shapes (rectangular, trapezoidal and semi-circular) is numerically investigated. For each rib shape, the optimum geometric ratio and volume fraction were calculated using entropy generation minimization technique. The governing equations in...
متن کاملThe effect of hemispherical chevrons angle, depth, and pitch on the convective heat transfer coefficient and pressure drop in compact plate heat exchangers
Plate heat exchangers are widely used in industries due to their special characteristics, such as high thermal efficiency, small size, light weight, easy installation, maintenance, and cleaning. The purpose of this study is to consider the effect of depth, angle, and pitch of hemispheric Chevrons on the convective heat transfer coefficient and pressure drop. In the simulation of the heat ex...
متن کاملThe effect of hemispherical chevrons angle, depth, and pitch on the convective heat transfer coefficient and pressure drop in compact plate heat exchangers
Plate heat exchangers are widely used in industries due to their special characteristics, such as high thermal efficiency, small size, light weight, easy installation, maintenance, and cleaning. The purpose of this study is to consider the effect of depth, angle, and pitch of hemispheric Chevrons on the convective heat transfer coefficient and pressure drop. In the simulation of the heat ex...
متن کاملExperimental investigation on the heat transfer performance and pressure drop characteristics of γ-Al2O3/water nanofluid in a double tube counter flow heat exchanger
In this paper, overall heat transfer coefficient and friction factor of water based γ-Al2O3 nanofluid in a double tube counter flow heat exchanger have been measured experimentally under turbulent flow condition. For better dispersion of γ-Al2O3 nanoparticles in distilled water, magnetic stirrer and ultrasonic vibrator (with a power of 240 kW and frequency of 35 kHz) were implemented. The stabi...
متن کامل